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Abstract

We propose a novel vertex affinity measure in this paper. The new vertex affinity quan-
tifies the proximity between two vertices in terms of their clustering strength and is ideal
for such graph analytics applications as community detection. We also developed a frame-
work that combines simple graph searches and resistance circuit formulas to compute the
vertex affinity efficiently. We study the properties of the new affinity measure empirically
in comparison to those of other popular vertex proximity metrics. Our results show that
the existing metrics are ill-suited for community detection due to their lack of fundamental
properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

1 Introduction

Graphs have been used as an effective means to explore the relations between data object. Graph
analytics has gained a great deal of interest in recent years as the demand for the capability to
mine useful information from an increasingly large volume of data grew stronger. The graph
analytics has found its uses in a wide range of applications, such as social network analysis, web
mining, bioinformatics, and social media analysis.

One of the fundamental and frequently utilized functionalities in graph analytics is to measure
how close two vertices in given graph are to each other. Many metrics that measure the distance
between vertices in a graph are reported in literature [19, 24, 3, 26, 21, 10, 7] and are applied
to solving a variety of graph analytics applications [35, 37, 26, 14, 25, 4].

These metrics commonly rely on the paths between vertices to determine the proximity
between them. However, they differ in how to combine the path information in their computation
and hence compute closely related, but slightly different proximity measures. As a result, the
outcome from the same graph analytics application may vary quite considerably depending on
the type of the proximity metrics used. For example, the commute time [21] renders very high
degree vertices to be closer to other vertices, whereas the Katz score [19] places vertices that are
connected by a large number of short paths closer to each other. Therefore, it is critical to use
vertex proximity metrics that are best suited for intended applications. By the same token, for
any proximity metric to be effective, it must be defined within the context of target applications.
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Laboratory under Contract DE-AC52-07NA27344.



We propose a new vertex proximity concept called affinity for community detection [23] in
this paper. Community detection refers to a graph analytics problem to find a set of densely-
connected subgraphs, each of which represents a community structure in a graph. Community
detection is an important graph analytics application that has found its uses in a wide spectrum
of applications, including social network analysis, bioinformatics, biology, social media analysis,
and web mining, and has received a great deal of attention recently [13, 16, 29, 11, 18, 9, 12,
1, 8, 6, 17]. To cluster vertices that are densely-linked to each other effectively, we define the
affinity as a measure of proximity between vertices in terms of their clustering strength. That
is, our affinity indicates how close two vertices are to each other in terms of their possibility of
being in the same community.

The affinity measure is designed based on two basic ideas. Since vertices in the same com-
munity are highly likely to be connected to each other by direct edges, there are expected to
be many short paths connecting any two vertices in the community. Therefore, we argue that
the clustering strength of two vertices should increase if they are connected by a large number
of short paths. We also argue that the affinity between two vertices, u and v, is also affected
by the affinity among the vertices on the paths that connect u and v. This is because if two
vertices are in the same community, it is likely that the vertices on the paths connecting them
are connected by many short paths as well.

We developed an efficient affinity computation framework, where we implement these ideas
by combining simple path searches and resistance circuit formulas. In our framework, a weight
is first assigned to each edge, which reflects the clustering strength of two endpoints of the
edge. Given two vertices, it finds a set of independent shortest paths connecting them through a
sequence of shortest (weighted) path searches. Finally, affinity is computed via simple resistance
circuit formulas, modeling the set of shortest paths found as resistance circuit. An advantage
of the developed framework, in addition to its computational efficiency, is that once edges are
assigned with application-specific weights, then the same framework can be used for a wide
range of applications.

Another main objective of this research is to empirically study the properties of the new
affinity measure in comparison with those of existing proximity metrics to evaluate their effec-
tiveness as a means for community detection. The results from this study show that the existing
metrics are not suitable for community detection as they lack some fundamental properties that
are essential for correctly capturing inter- and intra-community vertex proximity.

The paper is organized as follows. We provide preliminaries in Section 2, and related work are
discussed in Section 3. The new affinity measure and its computation framework are described in
Section 4. The results from the empirical study are discussed in Section 5. Concluding remarks
and directions for future work are given in Section 6.

2 Preliminaries

Graph G = (V,E) consists of sets of vertices and edges, denoted by V and E, respectively.
Given an edge e = (u, v) ∈ E, vertex v is said to be adjacent to vertex u and vertices u and v
are said to be incident to the edge e (an edge e = (u, v) is also denoted by e(u, v)). A set of
vertices that are adjacent to vertex u is called the neighbors of u and denoted by Nu. If each
edge represents an ordered pair of vertices, the graph is called directed. Otherwise, it is called
undirected. A graph is complete if any two vertices in the graph are connected by an edge.



The vertices and edges also can have weights, where the weight of a vertex v and an edge
e(i, j) are denoted by wv and wij , respectively. A graph that has weighted edges is called
weighted graph. An unweighted (or binary) graph is a graph with edges with the unit weight of
1.

A path from a source vertex s to a destination vertex t is a sequence <v0, v1, . . . , vk> such
that s = v0, t = vk and (vi−1, vi) ∈ E, for i = 1, 2, . . . , k and is denoted by p(s, t), The length of
the path for an unweighted graph is the number of edges in the path (k). For a weighted graph,
the length is the sum of the weight of edges in the path. Two paths are independent if they do
not share common vertices except the source and destination vertices. Minimum independent
shortest paths between s and t refer to a set of all possible independent shortest paths between
s and t that gives the minimum total weight sum.

Graphs, either weighted or unweighted, can be represented as a matrix. The adjacency
matrix of a given graph G = (V,E) is a |V | × |V | matrix M = (mij) such that mij = wij if
(i, j) ∈ E and mij = 0 otherwise. By di =

∑|V |
j=1wij , we denote the degree of a vertex i. The

diagonal matrix is a |V | × |V | matrix, such that Dii = di and Dij = 0 for i 6= j. The volume of
the matrix V (M) =

∑|V |
i=1 di. Given M and D, the (unnormalized) graph Laplacian of the graph

is L = D −M .

3 Related Work

Various metrics are currently used to measure the proximity between vertices in a graph. The
simplest metric among these is the geodesic distance that is defined as the length of shortest
path between two given vertices. The geodesic distance between two vertices can be found by
running simple breadth-first search [10]. There are a set of metrics that consider the neighbors
of given vertices in measuring the proximity, such as common neighbors metric [22], Jaccard’s
coefficient [31], and Adamic’s metric [2].

As opposed to the shortest path distance and neighbor-based metrics, there are a group of
metrics that take into account all the paths between given pair of vertices. In general, the value
of these metrics decreases as the number of paths connecting the vertices increases and their
average length decreases.

The Katz score [19] measures the vertex proximity by combining the number as well as the
length of the paths. It is defined by the following equation

Katz(s, t) =
∞∑
l=1

αl|paths<l>
s,t |, (1)

where paths<l>
s,t denotes the set of all length-l paths from s to t. In this equation, the paths are

exponentially damped by length to weigh the shorter paths more heavily. In addition, the Katz
score between two vertices increases as they become closer. Esfandiar et. al. reported a fast
and scalable method for approximating the Katz score [14].

The hitting time, Hij , is the expected time (in terms of the number of hops) for a random
walk starting from vertex i to reach vertex j [21]. The commute time Cij is defined as the
expected time for a random walk starting from vertex i to reach vertex j and return to i. That



is, Cij = Hij +Hji [21]. The commute time can be calculated by the following equation.

Cij = V ·
|V |∑
k=2

1
λk

(φk(i)− φk(j))2, (2)

where λk and φk are k-th eigenvalue and eigenvector of the graph Laplacian [26] for given graph
and V is the volume of the graph. When only a finite (usually very small) number of eigenpairs
are used, the commute time is said to be truncated. A variant of the commute time called scaled
commute time, SCij , is the commute time divided by the volume of the graph:

SCij =
Cij

V
. (3)

The commute time has been used in a wide range of applications. Saerens et al. [30] develop an
application for spectral clustering based on principal component analysis of graphs, using the
commute time distance. A commute time kernel based method is proposed in [15] for finding
clusters, where commute time is used to measure the dissimilarities between the objects. The
commute time was used even in image processing [27, 26], where the properties of the commute
time metric are exploited to develop a graph-spectral method for image segmentation. More
recently, Luxburg et. al. [32] showed that as the size of a given graph increases, the hitting
time can be approximated by extremely simple equations that do not take into account the
community structure of the graph.

4 Vertex Affinity for Community Detection

4.1 Motivation and Affinity Definition

We introduce a new affinity concept for community detection in this work. The concept of
the affinity for community detection is motivated by an observation that using an improper
proximity metric for solving a graph analytics often yields poor results [32] and therefore, it is
critical that any proximity measure must be defined within the context of the target application
to be effective. For community detection, we believe that the proximity between vertices should
be gauged in terms of their clustering strength that is an indication of those vertices being in the
same community. Measuring the clustering strength accurately and efficiently is a key challenge.
The proposed vertex affinity addresses this issue.

We argue that the clustering strength between any two vertices in given graph should be
high if they are connected by many short paths, because if any two vertices are in the same
community, they are likely to be connected to many common vertices in the same community via
short paths. We also argue that the overall clustering strength between two vertices is affected
by that of those vertices on the paths connecting them. It is because if two vertices are in the
same community, the vertices on the paths connecting them are also likely to be in the same
community and thus should also have high clustering strength. We define the vertex affinity in
a way to capture these aspects of the clustering strength.

The vertex affinity is defined as follows. Denoting the clustering strength of an edge as
ec(e(u, v)), the the resistance of an edge e, denoted by r(e), is defined as

r(e) = 1/ec(e). (4)



Given a path p = <v0, v1, · · · , vk−1>, the path resistance for a path p is defined as

R(p) =
k−1∑
i=1

r(e(vi−1, vi)). (5)

Let P (s, t) denote the minimum independent shortest paths between s and t. The affinity
between vertices s and t, denoted by A(s, t), is defined as

A(s, t) =
1∑

p∈P (s,t)
1

R(p)

. (6)

4.2 Framework for Affinity Computation

Equations 4 through 6 above collectively define the concept of the affinity. Readers should note
that we offer no rigorous definitions of the clustering strength of edges, because these definitions
are highly data- and application-dependent. This also highlights the extensibility of the proposed
affinity measure, as it can be easily adapted to different graphs and graph analytics applica-
tions by defining the clustering strengths accordingly. In this work, we developed a framework
specifically for computing the vertex affinity for community detection. In the framework, we
chose edge clustering strength measures, considering their simplicity, ease of computation, and
accuracy. The proposed framework is described below in more detail.

We adopt three simple methods to quantify the clustering strength of edge in this work
and refer to the quantified clustering strength of the edge as edge clustering coefficient. These
methods are designed to be simple, ease to compute, and accurate. Furthermore, they only
consider locally available information to compute the edge clustering coefficients. This not only
reduces the computational overhead, but can improve the accuracy of a community detection
algorithm, as vertices in a community typically have very short geodesic distance.

The first method is based on common vertex clustering coefficient that is a measure of the
clustering strength of vertex [34]. We chose the vertex clustering coefficient as basis because it
is easy to compute and can measure the clustering strength of a vertex with its neighbors fairly
accurately. The vertex clustering coefficient of vertex v, cc(v), is defined as

cc(v) =
|{e(u,w) : u,w ∈ Nv, e(u,w) ∈ E}|

dv · (dv − 1)
. (7)

We simply take the average of the vertex clustering coefficients of the endpoints of an edge as
its edge clustering coefficient. That is, the clustering coefficient of an edge e(u, v), ecc(e(u, v))
= cc(u)+cc(v)

2 . We call this approach the Average method.
The next edge clustering coefficient calculation method is called Joint method. Here, the

edge clustering coefficient e(u, v) is defined as

ecc(e(u, v)) =
|(x, y)|x, y ∈ J, e(x, y) ∈ E|

|J | · (|J | − 1)
, (8)

where J = Nu ∪Nv is the union of the vertices adjacent to either u or v. That is, in the Joint
method the edge clustering coefficient of an edge e(u, v) is defined as the density of a subgraph
formed by the vertices that are adjacent to either u or v.



The last approach we adopt for the computation of the edge clustering coefficient is what we
call Triangular method and was proposed in [28]. Basically, the Triangular method calculates
the clustering coefficient of an edge as the ratio of the number of triangles that contain given edge
to the number of all possible triangles that can be constructed on given edge. More formally,
the edge cluster coefficient ecc(e(u, v)) is

ecc(e(u, v)) =
zu,v + 1

min(du, dv)
, (9)

where zu,v is the number of triangles that contain the edge e. We discuss the computation of
the affinity in more detail in following.

Assuming that each edge in given graph is assigned its edge clustering coefficient, its inverse,
called edge resistance is assigned to each edge as its weight. This is necessary to ensure that
the affinity between two vertices decreases numerically as their clustering strength between
them increases. Once the resistance of each edge is determined, then given graph is reduced
to a network of resistors, each of which is a measure of the affinity. The affinity between any
two vertices can be modeled as the total resistance between them as shown in Equation (6).
It can be possibly computed by Kirchoff’s circuit laws, but a heuristic approach is adopted
for its computation in our framework, because solving the Kirchoff’s laws is computationally
expensive, and more importantly, this heuristic approach tends to limit the ill effect of remote
affinity values.

We use the minimum independent shortest paths for computing vertex affinities. Finding
minimum independent shortest paths is NP-hard, so we use a greedy method to solve it. In this
heuristic, given two vertices s and t, the shortest path with minimum path resistance is found
by the Dijkstra’s algorithm [10]. Then, all the vertices on this path except s and t are marked
invalid. The Dijkstra’s algorithm is invoked again to find next shortest path that consists of only
valid vertices is found. This process is repeated until there exists no path connecting s and t.
This set of independent shortest paths conceptually forms a combination of series and parallel
resistance circuits, whose total resistance that represents A(s, t) can be computed by simple
circuit theory formulas as specified in Equations (5) and (6). Pseudo codes for the framework
is given in Algorithm 1.

The strengths of the vertex affinity and its computation framework are as follows.

1. Since the vertex affinity measures the proximity between vertices in terms of their clus-
tering strength, it provides proximity values that are highly relevant to the community
detection, in contrast to other existing metrics. Therefore, any community detection algo-
rithms that take an input graph with affinity-based weights can find community structures
more accurately.

2. The affinity measure is quite extensible and flexible. It is because the proposed affinity
and its computation framework allow the use of any edge weights that can be optimized
for intended applicaitons. Such extensibility and flexibility enable the affinity measures to
be applied to solving a wide range of graph analytics problems.

3. The computation of the affinity values is relatively inexpensive compared to other metrics,
as they can be computed via simple heuristic approach.



Algorithm 1 Algorithm for Affinity Computation
1: Input: Graph G = (V,E), where V and E are a set of vertices and edges, and two vertices
s and t such that s, t ∈ V

2: Output: Affinity between s and t, A(s, t)

3: for ∀v ∈ V do
3.1: Compute clustering coefficient cc(v) = |{e(u,w):u,w∈Nv ,e(u,w)∈E}|

dv ·(dv−1) , where Nv and dv de-
note its adjacent vertices and degree, respectively

end for
4: for ∀e = (u, v) ∈ E do

4.1: Compute edge clustering coefficient ecc(e)
4.2: Compute edge resistance r(e) = ecc(e)−1

end for
5: P = ∅
6: Find the shortest path p = <s, v1, . . . , vk−2, t> using Dijkstra’s algorithm
7: while p 6= null do

7.1: P = P ∪ p
7.2: ∀v ∈ p such that v 6= s, t, V = V − v
7.3: Find the shortest path p = <s, v1, . . . , vk−2, t> using Dijkstra’s algorithm

end while
8: l = 0
9: for each pi ∈ P do

9.1: Let pi = <v0, v1, . . . , vk−2, vk−1>, where v0 = s and vk−1 = t
9.2: Compute R(pi) =

∑k−1
j=1 r((vj−1, vj)), where (vj−1, vj) ∈ E

9.3: l = l +R(pi)−1

end while
10: A(s, t) = l−1



5 Experimental Results

We study and discuss the properties of the affinity measure in comparison with those of other ex-
isting vertex proximity metrics in this section. These experiments also highlight its effectiveness
for community detection. In most experiments, we use the simple Average method to compute
the affinity values, because it correctly captures the characteristics of the vertex affinity with
low computational overhead.

Figures 1 and 2 show the impact of the number of edges on different proximity measures.
Figure 1 shows how the number of edges in a community (i.e., the density) impact various
proximity measures. Here, we measure the proximity between a pair of randomly selected vertices
for varying number of edges in a community that consists of 30 vertices. In measuring the Katz
score, we use α = 0.05. It is obvious that the clustering strength of two vertices in the same
community should increase as the density of the community increases. Therefore, the proximity
should increase or decrease monotonously, depending on how the proximity is quantified, as the
density of the community increases. This can be clearly seen in Figure 1, where the values of the
scaled commute time, Katz score, and our affinity measure monotonously vary as the number
of edges in the community increases. However, the plot for the commute time is not monotonic.
This is because the added edges in the community can increase the possibility of a random walk
to diverge, depending on which vertices are connected by the new edges, while increasing the
volume of the community. On the other hand, the scaled commute time decreases monotonously
as the size of clique increases (as shown in Figure 2.b), because its computation is independent
of the volume of graph.

This shortcoming of the commute time metric becomes more evident in Figure 2, which shows
the proximity values between any two vertices in cliques of varying size for different proximity
measures. Here, the proximity values are normalized in order to compared them on the same
scale. As the figure shows, the commute time plot monotonously increases as the size of clique
increases, indicating the weakening of the clustering strength between vertices in the clique. This
is because the computation of the commute time is affected by the volume of the community. On
the other hand, other proximity measures, including the affinity measure, capture the increases
in the clustering strength successfully. Such dependency on the volume of graph prevents the
commute time metric from correctly measuring the clustering strength and makes it unsuitable
for community detection.

Tables 1 and 2 show the sensitivity of various proximity measures to high degree vertices in
given graph, called hubs. In this experiment, we first construct a synthetic scale-free graph with
|V | = 500 and |E| = 1000 using preferential attachment graph generation method [5, 36]. Then,
we add necessary edges to form the 3- and 4-cliques. We measure the proximity from one of the
vertices in the cliques via different proximity measures. Tables 1 and 2 list 10 closest vertices to
the source for 3- and 4-clique test cases, respectively.

An ideal proximity measure for community detection should find the vertices in the same
clique to be the closest to the source vertex. However, all existing proximity metrics considered
in this experiment fail to place all vertices in the same cliques on top of the list. Rather, they
determine some of the remote hubs closer to the source vertex than actual member vertices in
the cliques. In contrast, the affinity measure correctly identifies the members as the closest to
the source, as it is relatively insensitive to remote hubs with low clustering strength, an ideal
property for community detection.

Figure 3 depicts a simple graph, in which two vertices (vertices 1 and 2) are connected by
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Figure 1: The impact of density in a community with 30 vertices on different proximity measures.
Proximity between a pair of randomly selected vertices is measured. The density of the given
community increases as we add more edges to the community. For the Katz score, we use α =
0.05.
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Figure 3: A synthetic graph where vertices 1 and 2 are connected by a set of independent paths
to test the sensitivity of various proximity measures to in-community edges.



Table 1: Ten closest vertices to vertex 499 in a 3-clique that contains three vertices, 499, 37,
and 431. For the Katz score, we use α = 0.05. We use 5 eigenpairs in the computation of the
truncated commute time.

Commute Time (CT) Truncated CT Katz Score Affinity
499 499 5 499
37 431 37 431
5 60 431 37
2 368 499 5
4 420 4 500
8 136 2 4
7 42 3 2
3 104 1 392
16 15 20 275
431 398 23 220

a set of independent paths of length 2. We measure the proximity from vertex 1 to the rest
of the vertices in the graph using different proximity measures. The results are presented in
Table 3. Although two endpoints are well connected by a fairly large number of paths, they
do not form a community, as there are no edges between all intermediate vertices (vertices 3
through 10 in Figure 3). The entries for the proximity metrics in the Table 3 contain certain
proximity values indicating positive clustering strength between vertices, whereas the values for
affinity measure are all infinite. Although these proximity values may indicate low clustering
strength, they can introduce noises, making the community detection difficult. On the other
hand, the affinity measure can divide vertices that are not in the same community cleanly and
enhance the accuracy of the community detection algorithms. The truncated commute time
exhibits particularly poor performance. This is a well-known problem with this metric, due to
the fact that the proximity value varies to a great extent depending on the number of eigenpairs
used.

Figure 4.a depicts a simple graph, where two communities (3- and 4-cliques) are connected
by a path of length 3. We measure the clustering strength between vertices 1 and 9, and vertices
1 and 8 by using different proximity measures. Table 4 presents the results. Since both vertices
8 and 9 are not in the same community as vertex 1, the measured clustering strength should be
very low. As can be seen in the table, the affinity measure captures this and correctly assigns
infinity as the affinity from the vertex 1 to the target vertices.

In Figure 4.b, we modify the graph by adding a vertex and two edges on the path connecting
two communities to form an additional 3-clique. We repeat the same experiment for this modified
graph and present the results in Table 5. Readers should note that now the affinity between
vertices 1 and 9 has become much smaller, as the clustering strength between vertex 1 and all
other vertices that are not in the same community has increased by the newly added 3-clique. It
should also be noted that the affinity among the vertices in the clique A is considerably smaller
than the other vertices in the graph. On the other hand, the added edges in fact increase
the commute time from vertex 1 to other vertices, because the added 3-clique increases the
possibility of divergence in random walk. Furthermore, the new 3-clique has little impact on the
scaled commute time and the Katz score.



Table 2: Ten closest vertices to vertex 499 in a 4-clique that contains three vertices, 499, 37,
431, and 471. For the Katz score, we use α = 0.05. We use 5 eigenpairs in the computation of
the truncated commute time.

Commute Time (CT) Truncated CT Katz Score Affinity
499 499 37 499
37 431 5 431
5 60 431 471
2 368 471 37

431 420 499 5
4 136 4 4
8 42 2 500
7 104 3 2
3 15 1 392

471 398 23 275

Table 3: The proximity from vertex 1 to all vertices in the graph shown in Figure 3. For the
Katz score, we use α = 0.15. We use 5 eigenpairs in the computation of the truncated commute
time.

Vertex Commute Time (CT) Truncated CT Katz Score Affinity
2 8 0 0.2813
3 18 12.0124 0.2344
4 18 3.6581 0.2344
5 18 10.3902 0.2344
6 18 11.3084 0.2344 ∞
7 18 11.4198 0.2344
8 18 7.2989 0.2344
9 18 4.7359 0.2344
10 18 3.1763 0.2344

Table 4: The proximity between vertex 1 to vertices 9 and 8 in the graph shown in Figure 4.a.
For the Katz score, we use α = 0.15.

Proximity Measures Proximity(1, 9) Proximity(1, 8)
Commute Time 64 100

Katz Score 0.0045 0.0002
Affinity ∞ ∞
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Figure 4: Synthetic test graphs for evaluating the effect of overlapping communities on various
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Table 5: The proximity between vertex 1 to vertices 9 and 8 in the graph shown in Figure 4.b.
For the Katz score, we use α = 0.15.

Proximity Measures Proximity(1, 9) Proximity(1, 8)
Commute Time 65.3333 107.3333

Katz Score 0.0055 0.0002
Affinity 7.5 11.23333333
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Figure 5: The construction of two quasi-cliques with certain density connected by a single edge.
Clique A is built using two densities, 0.3 and 0.5. Clique B is a fully-connected clique (i.e.,
density = 1.0).

In Figure 5, we consider a graph that is comprised of two cliques each with 15 vertices,
which are connected by a single edge (e(15, 16)). The clique A is a quasi-clique with certain
density and the clique B is a fully-connected clique. Two density values, 0.3 and 0.5, are used
in constructing the clique A in this study. We measure the clustering strength from the left
endpoint of the connecting edge (vertex 15) using the same proximity measures considered in
previous experiment. Because there is only one edge that is not part of any communities and
vertex 15 has higher clustering strength with those vertices in the same clique, the majority of
vertices that are close to vertex 15 should be in the clique A.

Table 6 lists top 15 vertices closest to the vertex 15. As shown in the table, all the proximity
metrics include remote vertices in the list for low density (0.3). The Katz score show particularly
poor performance, because there are more paths available to the vertices in the clique B. For
higher density (0.5), however, all the metrics correctly identify the closest vertices. Table 7
presents 15 closest vertices to vertex 15 in terms of the affinity for two different edge clustering
coefficient calculation methods: Average and Triangular methods.

The first column in the Table 7 shows that with the Average method, remote vertices
(in clique B) can be selected as close vertices the affinity with Average method can choose
remote vertices over the members. This occurs in the example graph because the weight on the
connecting edge is positive with the Average method and the clique B has higher density than
the clique A. This potentially ill aspect of the affinity can be easily corrected by utilizing the
Triangular method. With such adaptation, the affinity measure detects the closest vertices
correctly, regardless of the density of the clique A.

6 Conclusions and Future Work

A novel proximity concept called affinity is proposed for community detection (vertex clustering)
in this paper. The affinity quantifies the proximity between vertices in terms of their clustering
strength. A framework that combines simple graph searches and resistance circuit formulas
for the efficient computation of the affinity is also developed in this work. We empirically



Table 6: List of vertices that are close to vertex 15 in Figure 5 for various proximity metrics.
The vertices are listed in the order of their proximity to the vertex with measured proximity
values in parenthesis. We use α = 0.05 for computing the Katz score.

Density Commute Time Katz Score
15 (0.0000) 16 (0.056309)

10 (122.6651) 10 (0.056195)
1 (122.8442) 1 (0.053901)
7 (135.6231) 7 (0.053636)
11 (156.6409) 11 (0.051099)
2 (158.6890) 15 (0.013557)
5 (213.8228) 17 (0.008044)

0.3 3 (226.5083) 25 (0.008044)
12 (246.4515) 23 (0.008044)
16 (258.0000) 22 (0.008044)
14 (266.5115) 24 (0.008044)
9 (288.0511) 27 (0.008044)
22 (292.4000) 19 (0.008044)
25 (292.4000) 18 (0.008044)
21 (292.4000) 28 (0.008044)

15 (0.00) 7 (0.0640)
10 (83.21) 10 (0.0634)
7 (85.06) 11 (0.0630)
12 (87.08) 12 (0.0612)
11 (88.32) 1 (0.0596)
1 (93.92) 16 (0.0567)
8 (94.09) 13 (0.0551)

0.5 4 (102.41) 15 (0.0211)
3 (103.32) 8 (0.0175)
5 (107.61) 4 (0.0146)
14 (108.69) 5 (0.0142)
2 (110.54) 3 (0.0124)
6 (111.76) 14 (0.0119)
9 (118.67) 2 (0.0094)
13 (139.10) 6 (0.0092)



Table 7: List of vertices that are close to vertex 15 in Figure 5 for the proposed affinity measure.
The vertices are listed in the order of their affinity to the vertex with measured affinity values
in parenthesis.

Density = 0.3 Density = 0.5
Average Triangular Average Triangular

15 (0.0000) 15 (0.0000) 15 (0.0000) 15 (0.0000)
16 (1.8750) 10 (0.5455) 7 (0.7041) 10 (0.4327)
10 (1.9209) 7 (0.5882) 11 (0.7240) 7 (0.4511)
7 (2.2875) 1 (0.7362) 10 (0.7527) 11 (0.4757)
1 (2.7020) 2 (0.9783) 12 (0.7589) 8 (0.5119)
19 (2.9464) 13 (1.0000) 8 (0.7919) 12 (0.5185)
17 (2.9464) 11 (1.1200) 5 (0.8447) 4 (0.5687)
18 (2.9464) 5 (1.2592) 4 (0.8667) 5 (0.5703)
21 (2.9464) 3 (1.3333) 1 (0.8742) 13 (0.5806)
20 (2.9464) 12 (1.5036) 3 (0.8856) 3 (0.5920)
22 (2.9464) 9 (1.8421) 14 (0.8862) 14 (0.5938)
23 (2.9464) 14 (1.9697) 2 (0.9624) 1 (0.6006)
24 (2.9464) 6 (2.2105) 9 (0.9730) 2 (0.6452)
25 (2.9464) 8 (2.3158) 6 (0.9832) 6 (0.6682)
26 (2.9464) 4 (2.4000) 13 (1.1368) 9 (0.6746)

studied the properties of the new affinity measure and compare it to other existing proximity
metrics reported in the literature. Our results show that the new affinity measure possesses
properties that are essential for capturing inter- and intra-community clustering strength and
can potentially enhance the performance of any community detection algorithms.

The most obvious extension of this work is to apply the proposed affinity concept to existing
community detection algorithms. Input to existing community detection algorithms is typically
unweighted graphs. We believe that reweighing a given graph by taking the affinity between
the endpoints of each edge as the weight of the edge will greatly improve the performance of
the community detection algorithms. Further, the fact that the affinity measure can assess the
clustering strength of any two non-adjacent vertices motivates us to develop a new affinity-based
community detection algorithm.
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